一、前 言
图1 大气污染严重
随着经济快速发展,全球变暖和大气污染、水污染等环境问题日趋严峻,对生态系统和人类生存与健康构成了严重威胁。针对温室气体、挥发性有机化合物(VOCs)、硫氧化物(SOx)、氮氧化物(NOx)等大气污染物的排放控制以及水体净化等环境问题,现阶段已经发展了吸附法、吸收法、膜分离法、生物法、等离子体法、光催化法、燃烧法等多种净化技术。其中,吸附法具有成本较低、适用范围广、使用简便、无二次污染且吸附剂可循环使用等优点,在环境净化领域得到了广泛应用。作为吸附技术的核心,高性能吸附材料的开发一直是该领域的研究热点。
图2 世界上最轻的固体气凝胶
气凝胶是由胶体粒子或高聚物分子相互聚集形成纳米多孔网络结构,并在孔隙中充满气态分散介质的一种多孔固体材料。气凝胶具有相当高的比表面积、超高的孔隙率、可调控的开放孔隙结构、易于化学修饰的表面以及多样化的种类和形态,在气体吸附净化、水体净化等环境净化领域展现出广阔的应用前景。
今天,我们就来简单聊一聊气凝胶在环境净化领域中的应用。
二、气凝胶的结构特点
对于多孔吸附材料而言,比表面积、孔隙结构以及表面化学性质是影响其吸附性能的关键因素。气凝胶具有三维连续纳米多孔网络结构,孔隙率可高达99.8%,其中SiO2气凝胶和活化后碳气凝胶的比表面积分别可达约1000 m2/g、3300 m2/g,高孔隙率和比表面积提供了大量表面活性吸附位点,使其具有很好的吸附性能,是活性炭吸附能力的6倍。此外,气凝胶开放连通的孔隙结构有利于气体扩散流动,使气体分子易于与吸附位点接触。因此,无论是在气体吸附净化还是水体净化中,气凝胶都扮演着重要的角色。
值得注意的是,仅依靠气凝胶自身网络结构对气体进行物理吸附,吸附量有限,吸附选择性不高,在实际应用中共存气体组分的竞争吸附往往对目标气体的吸附产生不利影响。因此,近年来的研究工作大多集中在对气凝胶进行修饰改性以提升其对目标气体的吸附量和/或选择性。
图3 气凝胶在工业污染处理中的应用
在CO2吸附方面,对于SiO2气凝胶以及SiC气凝胶、石墨烯气凝胶等新型气凝胶,目前主要通过氨基功能化、氮掺杂等方式引入碱性活性中心,依靠特异性化学吸附同时提高气凝胶对CO2的吸附量和选择性;而对于碳气凝胶则可通过活化进一步提升其比表面积,并同时引入对CO2吸附起到关键作用的微孔和超微孔以实现高效吸附。在VOCs吸附净化方面,依靠物理吸附的主要问题是需要克服水分子的竞争吸附作用,其研究主要集中在通过引入非极性有机官能团对气凝胶进行疏水改性;而金属氧化物气凝胶和新型生物质基气凝胶利用自身独特的活性中心,往往能够对VOCs进行化学吸附从而达到高效净化VOCs的目的。
三、气凝胶在环境净化中的应用
气凝胶在环境净化领域中的应用主要体现在气体吸附净化和水体净化两个方面。
目前针对环境净化研究报道最多的主要是SiO2气凝胶和碳气凝胶。此外,近年来对金属氧化物气凝胶以及新型SiC气凝胶、石墨烯气凝胶和生物质基气凝胶在环境净化中的应用也有相关报道。
1.SiO2气凝胶
图4 SiO2气凝胶毡
SiO2气凝胶作为吸附材料具有吸附效率高、脱附方便、本身性能稳定等优点,是研究最多、最为成熟的气凝胶材料,最先被应用到气体吸附净化领域。通过对SiO2气凝胶进行氨基功能化或疏水改性,可以进一步提升其对CO2或VOCs的吸附性能。改性后的SiO2气凝胶在干燥、潮湿条件下对10%(体积分数)CO2的吸附量分别可达1.95 mmol/g和6.97 mmol/g。
由于水分子的竞争吸附,活性炭、硅胶等传统物理吸附类材料在潮湿环境下对VOCs的吸附性能会显著降低。而疏水SiO2气凝胶,可有效抑制水分子的竞争吸附,提高材料在潮湿环境下对目标有机气体的选择性。疏水SiO2气凝胶对于苯、甲苯、四氯化碳等几种VOCs的吸附量均远大于传统吸附剂活性炭以及活性炭纤维,而对于水蒸气的吸附量(0.12g/100g)相比于亲水SiO2气凝胶(6g/100g)明显降低。其吸附机理如下:(1)有机蒸气扩散进入气凝胶孔道并被吸附在孔道内;(2)吸附过程放热,低热导率使热量被保留在气凝胶颗粒中;(3)气凝胶颗粒内温度上升,降低了有机物的平衡吸附量;(4)热量缓慢释放,气凝胶颗粒温度下降使平衡吸附速率增加,吸附过程继续。
图5 SiO2气凝胶在水体净化中的应用
SiO2气凝胶也可用于水体净化和油污吸附,能够快速、大量地吸收水中的硝基苯、油污、苯酚及一些挥发性有毒污染物,对亚甲基蓝等染料类吸附质具有高达98%以上的去除效果,在海洋净化、石油化工水体污染等领域有着较为广泛应用。
2.碳气凝胶
图6 碳气凝胶
碳气凝胶作为一种新型纳米级多孔碳材料,具有孔隙率高、比表面大、密度范围广等特点。碳气凝胶具有高于SiO2气凝胶的比表面积和孔体积,是另一大类气凝胶吸附材料。除采用类似SiO2气凝胶的修饰改性方法外,碳气凝胶还可通过活化进一步增大比表面积,改善孔隙结构和表面化学性质,从而有效提升其对CO2、VOCs的吸附性能。
碳气凝胶常用于除去水中的有害金属和有机物,如Hg2+、Pb2+、硝基苯、硝基苯酚等。一般是将一定结构的碳气凝胶装塔,让需要处理的水从中流过,水中的金属杂质就会吸附在气凝胶上。此外,碳气凝胶还可用作电吸附和电催化氧化技术处理废水中的电极。
3.金属氧化物气凝胶
金属氧化物气凝胶丰富的表面活性位点如金属中心、活性羟基等使其具有独特的吸附性 质,往往能够发生化学吸附,具有较高的吸附量和选择性。如MgO-Al2O3气凝胶,表面存在三种不同强度的碱性吸附位点,对乙醛、丙酮等九种典型VOCs均有良好的吸附性能,饱和吸附量远大于活性炭,并且VOCs在纳米晶表面发生了多分子层解离吸附。
4.功能性纤维素气凝胶
功能性纤维素气凝胶通常通过临界干燥或者冷冻干燥制备出来,具有极高的比表面积和孔隙率,不仅具有传统气凝胶的特点,同时融入了自身良好的生物相容性、可降解、环境友好等特征,在吸附CO2、甲醛等气体,以及去除废水中的重金属离子、有机染料、有机溶剂和油污水等方面具有天然的优势。
图7 纤维素气凝胶对油类和有机溶剂的吸附(a:植物油;b:环己烷;c:氯仿)
5.SiC气凝胶
图8 SiC气凝胶
SiC气凝胶通常由有机-SiO2复合气凝胶前驱体经高温炭化及碳热还原反应制备。SiC气凝胶可作为有效稳固的载体,用于制备氨基功能化的CO2吸附材料。氨基功能化的块状SiC气凝胶,其在不同的温度(25~75 ℃)下对1%(体积分数)CO2的吸附量几乎相同,干燥条件下约为1.8 mmol/g。使用后的块状SiC气凝胶经简单的分离、热处理和再次氨基功能化后可恢复吸附活性,且其CO2吸附性能经至少12次重复使用后仍没有明显降低,由此可知,SiC气凝胶具有优异的重复使用性能,可显著降低使用成本。
6.石墨烯气凝胶
图9 石墨烯气凝胶
石墨烯片层互相堆叠可以形成具有三维多孔网络结构的石墨烯气凝胶,其既兼具石墨烯电子传输速率快、表面含氧基团丰富和气凝胶比表面积大、孔隙率高的特点,又易于进一步修饰改性。石墨烯气凝胶对CO2、SO2具有较高的吸附量和较快的吸附速率,其对CO2的最大吸附量为2.38 mmol/g(1000kPa),对SO2的最大吸附量为2.19mmol/g,在5min内即可达到吸附平衡。
图10 大气污染、水污染对环境的伤害
四、总 结
气凝胶具有超高的孔隙率、开放连通的介孔孔隙以及较高的热稳定性,因而具有良好的吸附能力和再生性,并可通过氨基功能化、疏水改性、活化等手段进一步提升其在环境净化中的吸附性能,前景广阔。目前关于气凝胶在环境净化方面的研究已取得较大进展,未来应继续加强气凝胶在检测技术和处理方法上的研究,基于我国环境中存在的污染物质的具体情况对其改革创新,充分发挥气凝胶在环境净化领域中的作用。